Cardiac Injuries

Ryan A. Lawless, MD
Trauma Medical Director
Associate Professor of Surgery
Ernest E. Moore Shock Trauma Center at Denver Health
Blunt Cardiac Injuries

- Common Mechanisms of Injury
- Pathophysiology
- Presentation
- Management

Penetrating Cardiac Injuries

- GSW vs low energy penetrating trauma
- Presentation
- Management
Blunt Cardiac Injuries

- Multiple types of injuries
 - Myocardial contusions (>60%)
 - Right more common than left
 - Myocardial rupture
 - Pericardial rupture
 - Valvular Injury
 - Cord rupture
 - Commotio Cordis (sudden death without injury)

- Incidence: unknown (8-71%)
 - 20% of all blunt thoracic injuries
 - Up to 20% of all MVCs
Mechanism of Injury

• Significant force:
 • MVC, Auto-ped
 • Fall
 • Crush
 • Sports-related (baseball to the chest, etc.)

• Severe abdominal compression \rightarrow inc. blood flow through IVC \rightarrow inc. blood within the right heart \rightarrow chamber rupture from sudden inc. intracardiac pressure

• Blunt coronary artery injury (rare)
• Myocardial Contusion
 • Presentation: tachycardia
 • May develop conduction abnormalities/arrhythmias

• Myocardial rupture:
 • Presentation: tamponade or death
 • Ventricle – more dramatic presentation
 • Right has been survival than left
 • Atrial – potentially more gradual onset

• Valvular rupture (aortic > mitral):
 • Presentation: heart murmur, heart failure (dyspnea, crackles, hypotension)

• Septal rupture
 • Presentation: delayed – often with heart failure symptoms

• Commotio cordis: blow to anterior chest without pre-existing disease
 • Presentation: ventricular fibrillation (timing of cardiac cycle may play a role)

• Pericardial rupture:
 • Presentation: cardiac evisceration and great vessel torsion → HS instability or arrest
Diagnosis of BCI

• Suspicion (must maintain high index of suspicion):
 • Chest trauma with palpitations, arrhythmia, new murmur, unexplained tachycardia/hypotension

• EKG (no pathognomonic finding):
 • ST changes – ischemia vs infarction
 • Conduction abnormalities:
 • Atrial fibrillation, right BBB, simple/multiple PVC

• FAST: cardiac view with pericardial fluid, tamponade

• ECHO (TEE>TTE)

• Troponin: rule out, not in (EKG and troponin normal = no BCI)
<table>
<thead>
<tr>
<th>Grade I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blunt cardiac injury with minor EKG abnormality (non specific ST of T wave changes, premature atrial or ventricular contractions, or persistent sinus tachycardia)</td>
</tr>
<tr>
<td>2. Blunt or penetrating pericardial wound without cardiac injury, tamponade, or cardiac herniation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blunt cardiac injury with heart block or ischemic changes without cardiac failure</td>
</tr>
<tr>
<td>2. Penetrating tangential cardiac wound, up to but not extending through endocardium, without tamponade</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blunt cardiac injury with sustained or multifocal ventricular contractions</td>
</tr>
<tr>
<td>2. Blunt or penetrating cardiac injury with septal rupture, pulmonary or tricuspid incompetence, papillary muscle dysfunction, or distal coronary artery occlusion without cardiac failure</td>
</tr>
<tr>
<td>3. Blunt pericardial laceration with cardiac herniation</td>
</tr>
<tr>
<td>4. Blunt cardiac injury with cardiac failure</td>
</tr>
<tr>
<td>5. Penetrating tangential myocardial wound, up to but not through endocardium, with tamponade</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blunt or penetrating cardiac injury with septal rupture, pulmonary or tricuspid incompetence, papillary muscle dysfunction, or distal coronary artery occlusion producing cardiac failure</td>
</tr>
<tr>
<td>2. Blunt or penetrating cardiac injury with aortic or mitral incompetence</td>
</tr>
<tr>
<td>3. Blunt or penetrating cardiac injury of the right ventricle, right or left atrium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blunt or penetrating cardiac injury with proximal coronary artery occlusion</td>
</tr>
<tr>
<td>2. Blunt or penetrating left ventricular perforation</td>
</tr>
<tr>
<td>3. Stellate injuries, less that 50% tissue loss of the right ventricle, right or left atrium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blunt avulsion of the heart</td>
</tr>
<tr>
<td>2. Penetrating wound producing more than 50% tissue loss of a chamber</td>
</tr>
</tbody>
</table>
Ventricular septal rupture (ECHO & MRI)
Management of BCI

- EAST Evidence-based management guideline
 - Admission
 - Imaging
 - Procedures
 - Predictions

EAST guidelines

A. Level I

1. An admission EKG should be performed on all patients in who there is suspected BCI.

B. Level II

1. If the admission EKG is abnormal (arrhythmia, ST changes, ischemia, heart block, unexplained ST), the patient should be admitted for continuous EKG monitoring for 24 to 48 hours. Conversely, if the admission EKG is normal, the risk of having a BCI that requires treatment is insignificant, and the pursuit of diagnosis should be terminated.

2. If the patient is hemodynamically unstable, an imaging study (echocardiogram) should be obtained. If an optimal transthoracic echocardiogram cannot be performed, then the patient should have a transesophageal echocardiogram.

3. Nuclear medicine studies add little when compared to echocardiography and, thus, are not useful if an echocardiogram has been performed.

C. Level III

1. Elderly patients with known cardiac disease, unstable patients, and those with an abnormal admission EKG can be safely operated on provided they are appropriately monitored. Consideration should be given to placement of a pulmonary artery catheter in such cases.

2. The presence of a sternal fracture does not predict the presence of BCI and, thus, does not necessarily indicate that monitoring should be performed.

3. Neither creatinine phosphokinase with isoenzyme analysis nor measurement of circulating cardiac troponin T are useful in predicting which patients have or will have complications related to BCI.

Septal repair following blunt rupture
Denver Health Case

- 25 yo male s/p helmeted MCC.
- Initially hypotensive and tachycardic in the trauma bay and responded to resuscitative efforts.
- Labs showed a base deficit of 8.
- Imaging showed a transverse sternal fracture with retrosternal hematoma.
Case cont’d

• TTE showed anterior wall motion abnormalities.
• Troponin was 15.5.
• Cardiology initially wanted to observe. We placed the patient in the ICU.
 • Developed two runs of non-sustained ventricular tachycardia overnight
 • Troponin now > 30
Penetrating cardiac injuries

• Mechanism:
 • Anything that penetrating the thoracic cavity into the heart
 • GSW
 • Knife
 • Sword
 • Ice pick
 • Fence post, etc.

• Injuries:
 • Simple – single chamber involvement
 • Complex – Multiple chambers or injuries beyond the myocardium
 • Coronaries, valves, septum, intracardiac fistulas
The Cardiac “Box”

The cardiac box is defined by the nipples laterally, the clavicles superiorly, and the costal margin inferiorly.
Fatal thoracic gunshots and the cardiac box
Retrospective autopsy review, patients with penetrating torso gunshot 2011-3, Georgia
Excl: injuries above clavicle or below xiphoid

Wound in cardiac box n=257
81 (31%) cardiac injuries

Wound outside cardiac box n=67
14 (21%) cardiac injuries

Cardiac box:
Clavicle to tip of xiphoid
Between midclavicular lines

Jhunjhunwala J Trauma Acute Care Surg 2017;83:349

SGEM #332
Etiology

• Incidence
 • Right ventricle: 37-67%
 • Left ventricle: 19-40%
 • Right atrium: 5-20%
 • Left atrium 2-12%
• GSW (42%) vs Stab (54%)
 • Less common: shotgun wound, impalement, laceration from rib fractures, iatrogenesis
• Epidemiology:
 • 18-55 per year in urban level I trauma centers
 • 50% dead at the scene, 25% DOA
• Management of atrial injury
Atrial Injury with clamp
Atrial injury
suture repaired
Trying to place a foley in the injury

Injury located next to LAD
Final repair with pledgets near LAD
Saved the best for last
Pre-Hospital Communication

- 58 year old male found down at place of work...framing shop.

- Reported to have chest pain and a suspected intentional overdose.

- Patient found on the ground, holding his left chest, complaining of severe pain.
Pre-Hospital Exam

- Patient was found alert and oriented with an intact airway.
- BP 136/100, P 88, R 18, sat 100%
- 7 foreign bodies penetrating the left anterior chest
- Patient transferred via helicopter for direct OR transport.
- En route 2 large bore IVs established and oxygen delivered via NC.
Pertinent History

- Patient reportedly had shot himself several times with a nail gun the evening before and then awoke and shot himself again.

- Also reported to have stabbed himself in the left chest several years prior to this incident.
Hospital Presentation

- **Primary Survey**
 - Airway intact
 - Bilateral breath sounds
 - Circulation palpable pulses
 - BP 120/82, P 94, R 17, 100% on 15L
 - Disability: awake/alert, GCS 15
 - Exposure......
Secondary Survey

- Neck: no JVD noted, trachea midline, no crepitus

- Cardiac: NSR, good heart tones

- Pulmonary: previous left thoracotomy incision, seven penetrating left anterior chest wall wounds with nails in the chest, decreased breath sounds on the left

- GI: soft, nontender with no distention and good bowel sounds
What should we do?

- Multiple penetrating injuries to left chest
 - Probable left lung injury
 - Probable cardiac injury
- Previous thoracotomy
- Currently awake and alert
Thoracotomy, redo!
Four other nails found in upper chest and removed without difficulty. Non-anatomic wedge resection performed in left upper lobe of lung.