Orthopedic Reductions for the ED

Raveesh D. Richard, MD

Department of Orthopedics
Denver Health Medical Center
Assistant Professor of Orthopedic Surgery
University of Colorado School of Medicine

August 4, 2022
Disclosures

• None relevant to this talk
WTF?

• 33 yo M s/p MCC – hard, swollen, bluish scrotum and ER/shortened left leg
Overview
Closed Reduction Principles
Splinting Principles
Common Closed Reductions
Basic Overview

• Joint dislocations are rarely life-threatening
• Morbidity can be severe
• “VONCHOP”
 • Vascular Compromise
 • Open Fracture
 • Neurologic Deficit (cauda equina)
 • Compartment syndrome
 • Hip dislocation
 • Osteomyelitis (septic arthritis)
 • Pelvic fracture (unstable)

Only true orthopedic emergencies!
Ortho Lingo - Nomenclature for Fractures

• Open vs Closed
• Description
 • Bone
 • Left vs Right
 • Reference Points – neck, tubercle, styloid, process, olecranon, etc...
 • Long Bones – divide into thirds and junctions
• Direction of Fracture Line
 • Transverse
 • Oblique
 • Spiral
• Simple vs Comminuted
Ortho Lingo – Fractures and Dislocations

• Position
 • Fragments described relative to their normal position
 • Displacement – any deviation from normal position
 • Distal fragment described relative to proximal

• Alignment
 • Relationship of the longitudinal axis of one fragment to another
 • Angulation – deviation from the normal alignment
 • Direction of angulation determined by direction of the apex of an angle formed by two fragments

• Complete vs Incomplete
• Involvement and Percentage of Articular Surface
Why Closed Reduction?

1. Improve Fracture alignment and add stability
2. Pain management
3. Soft tissue protection and swelling
4. Treatment planning
Closed Reduction Principles

Prior to Reduction:
- H&P
- ABC’s
- Evaluate skin, neurovascular status, and compartments
- Anesthesia type
 - local vs IV sedation
- Splint type
- Imaging
- Post Reduction neurovascular exam
Reduction Principles: Anesthesia

- Adequate analgesia and muscle relaxation
- Hematoma Block
- Intra-articular Block
- IV Sedation
 - Requires hemodynamic monitoring
 - Usually performed by ED, Anesthesia or Trauma team
Closed Reduction Principles

- Reproduce Fracture Mechanism
- Traction to Disengage Fracture Fragments
- Re-align Fracture
- Splint application

***Angulation beyond 90° is potentially required

Legend:

A. To apply the Agnew maneuver, traction is first applied either manually or with finger traps. B. A vector translation force (V) is applied to the distal fragment of the radius. C. The lunate translates on the distal radius, causing the distal fragment to tilt in the volar direction.

From: 42 Fractures of the Distal Radius and Ulna

Rockwood and Green's Fractures in Adults, 9e, 2019
Splinting Supplies

Have supplies ready prior to performing reduction:

- Splint type
- Stockinette
- Padding
- Plaster (premeasured)

- Room temperature water (risk of burn with hot water)
- Ace wrap
- Tape
Splinting Principles: Supplies

- Extremity support/traction
 - Assistants
 - Assistive device

Quigley’s Traction

Finger Traps and weight
Splinting Principles

• Non-circumferencial
 • Allows for changes in swelling and soft tissue evaluation

• Plaster vs prefabricated fiberglass
 • Plaster more versatile
 • Plaster better for customized mold

• Padding
 • 3-4 layers thick
 • Too thin – risk of burn
 • Too thick – harder to hold reduction

• Cold water to optimize time for placing molds & prevent burns
 • Plaster will set faster with warm water after gaining experience and comfort with supplies
Splinting Principles

- 3-point mold
 - To resist deforming forces
 - Maintain reduction
- “Straight Casts lead to Crooked Bones”
- “Crooked Casts lead to Straight Bones”

Legend:
A: An OTA A3.3 fracture with valgus angulation. B: Three-point fixation, or pressure, will reduce fracture if a soft tissue hinge is present.

From: *9 Principles of Nonoperative Management of Fractures* by Rockwood and Green's Fractures in Adults, 9e, 2019
Why Does This Matter? → Complications

- Thermal injury
- Compartment syndrome
- Loss of reduction
- Pressure Necrosis/Skin Sores
 - Place molds with broad hand surfaces
 - Avoid pressure points from molding with fingers
 - Extra padding over bony prominences
- Cuts and burns from removal
- Joint stiffness
- DVT/PE
- Skin wounds from sharp edges of cast/splint
10 Common Closed Reductions
Diagnosis?
Shoulder (Glenohumeral) Dislocation

- Anteriorly dislocated humeral head
- Glenoid
- Most common
 - Anterior – 95-97%
 - Posterior – 2-4%
 - Subclav/Intrathoracic – 1%
- Arm held in classic position
- Pre-reduction neurovascular exam & x-rays
- Procedural sedation vs Intra-articular anesthesia
Reduction (ant disloc)

- Stimson (hanging weight technique)
- Scapular Manipulation
- Leidelmeyer (external rotation)
- Milch
- Traction-Countertraction

Reduction (post disloc)

- Traction on internally rotated and adducted arm with pressure on humeral head
• Stimson
 • Prone position
 • Arm hanging
 • Traction in forward flexion using 5, 10 or 15 pound weight
 • May take 15-30 minutes
 • Use with scapular manipulation
• Scapular Manipulation
 • Stimson technique
 • Scapular tip medially
 • Slight dorsal displacement of scapular tip
 • Reduction may be subtle
• Leidelmeyer
 • Supine
 • Arm adducted
 • Elbow flexed 90°
 • Gentle external rotation
• Milch
 • Forward flexion or abduction until arm is directly overhead
 • Longitudinal traction
 • Slight external rotation
 • Manipulate humeral head upward into glenoid fossa
- Traction-Countertraction
 - Supine
 - Bed sheets tied
 - Slight abduction of arm
 - Continuous traction
 - Gentle external rotation
 - Gentle lateral force to humerus
 - Change degree of abduction
- Post-reduction neurovascular exam
 - Axillary nerve
 - Radial pulse

- Post-reduction x-rays
 - Reduction
 - Fractures

- Disposition
 - Sling and swathe
 - Younger ~2-3 weeks
 - Elderly ~1 week
 - Analgesia
 - Ortho follow-up
 - Younger 1-2 weeks
 - Eldery 5-7 days
Diagnosis?
Elbow Dislocation

FIG. 8. Normal interarticular relationships of the elbow. The dash-dot line (a–a') represents the anterior humeral line, and the broken line (b–b'), the proximal radial line. The important observation regarding these lines is that each passes through the middle third of the capitellum.
• 2nd most common overall
 • Posterior
 • Anterior
 • Medial/Lateral
• Pre/post-reduction neurovascular exam and x-rays
• Conscious sedation
• Local anesthesia
• Immediate reduction for vascular compromise
• 90° long-arm posterior splint
• Consult ortho if significant swelling, bruising, vascular/neuro deficit
• Posterior Dislocation
 • Shortened forearm, flexed ~45°, prominent olecranon
 • Traditional reduction
 • Supine with humerus stabilized
 • Medial/lateral displacement of olecranon corrected first
 • Steady in-line traction at wrist
 • Supination
 • Flex elbow
 • Direct pressure over olecranon
 • Splint in position of maximum stability

• Prone reduction method
 • Arm hanging over edge of bed
 • Apply pressure to olecranon
 • Downward traction at wrist
- Anterior dislocation (very rare)
 - FA extended, ant tenting prox FA, prominence dist humerus post
 - Reduction – in-line traction and backward pressure of prox humerus
 - Consult ortho

- Nursemaid’s elbow (Radial head subluxation)
 - Common in 1-3 yo
 - Mechanism – longitudinal traction of arm with wrist pronated
 - Child without distress and arm held slightly flexed and pronated
 - Reduction – thumb applies pressure to radial head as arm flexed and supinated in one fluid motion
 - Check for use of arm within 30 minutes
 - Splint for residual pain or re-subluxation
• Posterior long-arm splint +/- sugar-tong
 • Prevents flexion/extension and pronation/supination
 • Stockinette and cast padding from hand to proximal humerus with extra over olecranon
 • Elbow flexed to 90° in neutral position
 • Posterior upper arm down to elbow and continues along ulnar aspect of FA to MCP with 10 layers of 4-6 in plaster
 • Sugar-tong from dorsum of hand at MCP along dorsal FA around elbow and down volar FA to palm ending at MCP with 8 layers of 3-4 in plaster
 • Ace wraps to hold in place
Diagnosis?
Hip Dislocation
• True ortho emergency – must reduce within 6 hours
• AVN, traumatic arthritis, permanent sciatic nerve palsy and joint instability exponentially increase with length of time hip dislocated
• Consider multisystem injury as significant force required

• Classifications
 • Posterior – shortened, flexed, adducted, internally rotated
 • Anterior – abducted, flexed, externally rotated
• Pre/post-reduction neurovascular exam and x-rays
 • Sciatic nerve – palsy in 10%
 • Femoral vessels – primarily with anterior dislocation
 • AP/Lateral Pelvis - Up to 88% associated with fractures
• Consider CT scan to look for occult fracture
• Contraindication to reduction is femoral neck fracture
• Stimson vs Allis reduction
• Conscious Sedation
• Admit to Ortho
Stimson Technique - not practical for trauma patient

Procedure

- Prone with legs off edge of bed
- Stabilize pelvis
- Hip, knee, ankle flexed 90°
- Steady downward pressure in line with femur
- Internal/external rotation of hip
- Direct downward pressure on femoral head
• Allis Technique – most common
 • Supine with knee flexed
 • Pelvis stabilized
 • In line upward traction while hip slowly flexed to 90 deg
 • Greater trochanter pushed forward toward acetabulum
 • Internal/external rotation at hip
 • Once reduced, hip extended while maintaining traction
Diagnosis?
Distal Radius (Colles’ Fracture)
• Transverse fracture of distal radial metaphysis with dorsal displacement and angulation often 2° FOOSH
• Pre/post-reduction neurovascular exam and x-rays
• Hematoma vs Bier block vs Conscious sedation
• Reduction
• Splint
• Ortho follow-up
- **Traction-countertraction**
 - With/without finger traps
 - Finger traps
 - Attach thumb, index, middle
 - Hang 5-10 lb weight with elbow flex 90°
 - 5-10 min prior to reduction

- **Active reduction**
 - Fingers in finger trap
 - Thumbs on dorsum of distal fragment
 - Fingers on palmar forearm
 - Over-exaggerate the deformity
 - Distal fragment pushed distally, palmarly and ulnarly
- Splinting – sugar tong splint
 - Plaster preferred over fiberglass
- 15° palmar flexion
- 15° ulnar deviation
- Slight pronation
Legend:
Diagnosis?
Scaphoid Fracture
• Most common carpal bone fracture
• FOOSH
• High risk of nonunion and avascular necrosis
• Snuff-box pain/TTP → x-rays and always splint
• Ortho follow-up for repeat x-rays within 1-2 weeks
• Thumb spica splint
 • Forearm neutral
 • Wrist extended 25°
 • 8 layers of 3 inch plaster measured from mid-forearm to just beyond thumb
 • Mark location of MCP
 • Transverse cuts ~1cm distal to mark
 • Wrap flaps around thumb
Diagnosis?
Boxer’s Fracture
• 5th metacarpal neck fracture with apex usually dorsal
• 40° dorsal angulation without adverse functional outcome
• Reduce and refer to ortho or hand surgery for rotational deformity
• Hematoma block vs Ulnar block
• Reduction – attempt with any angulation
 • Dorsal pressure to volarly displaced head and volar pressure to proximal fragment
 • Proximal phalanx or PIP can be used for distal traction and as a lever for dorsal pressure
• Ulnar gutter splint
• Ortho or hand surgery follow-up
• Ulnar Gutter Splint
 • 8 layers of 3 inch plaster
 • Incorporates little and ring finger
 • Mid-forearm distally past DIP of little finger
 • Wrist extended 20°
 • MCP flexed 90°
 • PIP/DIP flexed 10°
Diagnosis?
Ankle Fracture Dislocation
• Described by relationship of talus to tibia
• Usually associated with fracture
• Pre/post-reduction neurovascular exam and x-rays
• Adequate analgesia vs conscious sedation
• Reduction (even if open)
• Splint
• Ortho for washout if open
- Reduction
- Supine
- Knee flexed
- Traction-Countertraction
• **Posterior Ankle Splint**
 - Applied first
 - 10-20 layers of 4-6 inch plaster
 - Prone with knee flexed 90° and ankle at 90°
 - Extend from plantar aspect of great toe to fibular head

• **Stirrup (U-Splint)**
 - 10 layers of 4-6 inch plaster
 - Prone with knee flexed 90° and ankle at 90°
 - Plaster across plantar surface extending up lateral and medial aspect of lower leg
 - Molded to medial and lateral malleoli
Diagnosis?
Knee Dislocation
• Gross deformity or hemarthrosis
• Vascular exam
 • Posterior ecchymosis
 • Expanding hematoma
 • Popliteal/DP/PT pulses
 • Thrill or bruit
 • ABI
 • CT Angio
• Neuro exam
• X-rays
• Light Sedation → Conscious Sedation
• Reduction
• Splint in 15° flexion
• Ortho consult for all suspected/confirmed dislocations
• **Ankle Brachial Index**
 - Ankle systolic blood pressure
 - Higher of bilateral brachial systolic blood pressures
 - Ankle systolic BP/Brachial systolic BP = ABI
 - Normal 0.9-1.3
• Traction-countertraction
 • Anterior – lift distal femur
 • Posterior – life proximal tibia
 • Medial, Lateral and Rotatory - Medial/lateral pressure as needed
 • Surgical reduction if not reducible
• Diagnosis?
Subtalar Dislocation
Evaluate for soft tissue compromise

Knee flexion to relax GSC

Ankle plantar flexion

Traction and manual pressure

Well padded post-mold with stirrups and some plantar flexion
Finally...

It Wouldn’t Be an Ortho Trauma Talk Without Mentioning the Pelvis
Why Pelvic Frx is So Concerning...

- Usually takes a tremendous amount of force
- The pelvis is highly vascularized
- One of the places you can lose a lot of blood without any obvious signs
- Damage to the genitourinary system

Major Assessment and Treatment
- Make sure you “rock the pelvis” as part of your trauma assessment
- Apply pelvic binder
Open Book Pelvic Ring

- Place bed sheet or pelvic binder at level of greater trochanters
- Internal rotation of legs
- Traction counter traction if vertical component
- Compression through greater trochanters
- Fasten binder or apply clamps to sheet
Take Home Points

- Do a good physical exam including neurovascular exam
- Get adequate imaging
- Control Pain
- Reduce and immobilize with pre/post reduction exams/imaging
 - May require local anesthetic or conscious sedation
 - 3-point molds to maintain reduction
- Consult ortho if help is needed
- Follow-up on the patient
References

• Closed Reduction, Traction, and Casting Techniques; OTA.ORG Online Resident Core Curriculum Lecture

• https://resources.aofoundation.org/-/jssmedia/surgery/42/42_o10_nonop_i610.ashx?w=400
Thank You