

EE Moore Denver Health / University of Colorado Denver

Disclosure : Haemonetics, Instrumentation Laboratory, Stago, Prytime & Humacyte **Research Support / Haemonetics Shared IP Co-founder ThromboTherapeutics Inc** NIH P50 / RM1 / T32 / UMI & DOD Grants

FFP : RBC Ratio / 24 Hr – Military Experience

Borgman, Holcomb et al J Trauma 2007

US Military : Potentially Survivable Iraq Oct 2001 - Nov 2004

Plasma is an Effective Multifunctional Colloid

Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Kozar et al. <i>Anesth Analg</i> 2011	Restore Endothelial Lining
Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1. Peng et al. 2013	Reduces Lung Permeability
Plasma is the physiologic buffer of tissue plasminogen activator-mediated fibrinolysis: rationale for plasma-first resuscitation after life-threatening hemorrhage. Moore et al. JACS 2015	Buffers Fibrinolysis
Plasma-Mediated Gut Protection After Hemorrhagic Shock is Lessened in Syndecan-1-/- MICE. Ban et al. Shock 2015	Reduces Gut Permeability
Plasma First Resuscitation Reduces Lactate Acidosis, Enhances Redox Homeostasis, Amino Acid and Purine Catabolism in a Rat Model of Profound Hemorrhagic Shock. D'Alessandro et al. Shock 2016	Enhances Metabolic Recovery

fresh plasma

Harmonized Data Collection

»The US DoD and the National Heart Lung and Blood Institute (NHLBI) worked collaboratively on these DoD-funded studies under an interagency strategic plan.

» (Pusateri et al)

»The agreed collaboration included the requirement for the studies to be harmonized in terms of design and data collection, and for samples and data from the studies to be shared

COMBAT Research Study

Control Arm	mrA lstnemireqx3
1. Normal Saline	1. Plasma Transfusion
2. RBC Transfusion	2. RBC Transfusion
3. Plasma Transfusion	3. Normal Saline

&

Trial Design : Prehospital

Severely injured trauma patients with life-threatening bleeding SBP < 70 mmHg or SBP < 90 with HR > 108 / min (ROC Study Group) Estimated 31% mortality in control group

50% Standard Group 50% Experimental Group: Receive Plasma first

Study Objectives

Determine if "plasma first":

- Attenuates trauma-induced coagulopathy
- Decreases blood product use
- Improves metabolic recover
- Decreases ARDS, MOF, death

FDA ... 30 day Mortality

PAMPer Trial

P: Prehospital A: Air M: Medical P: Plasma

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

VOL. 379 NO. 4

Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk for Hemorrhagic Shock

JULY 26, 2018

J.L. Sperry, F.X. Guyette, J.B. Brown, M.H. Yazer, D.J. Triulzi, B.J. Early-Young, P.W. Adams, B.J. Daley, R.S. Miller, B.G. Harbrecht, J.A. Claridge, H.A. Phelan, W.R. Witham, A.T. Putnam, T.M. Duane, L.H. Alarcon, C.W. Callaway, B.S. Zuckerbraun, M.D. Neal, M.R. Rosengart, R.M. Forsyther, T.R. Billiar, D.M. Yealy, A.B. Peitzman, and M.S. Zenati, for the PAMPer Study Group*

PAMPer Trial

UPMC - Pittsburgh, 2. CWRU MetroHealth - Cleveland, 3. University -Louisville, 4. Vanderbilt Univ - Nashville, 5. UTSW Parkland - Dallas 6. Univ Tennessee - Knoxville

Study Population

- Male (73%)
- Blunt mechanism (82%)
- Median Injury Severity Score of 22
- Prehospital intubation (51%)
- Prehospital red blood cell transfusion (35%)
- Surgeons performed urgent operative procedures on 58%

At 30-days ... 89 (34.1%) deaths in the standard care group and 53 (24.0%) deaths in the plasma group.

Accounting for intra-cluster variation.

23.2% vs. 33.0%

95%Cl -18.6, -1.0; p=0.029

30-Day Mortality

Control of Major Bleeding after Trauma (COMBAT)

Prospective randomized study of fresh frozen plasma versus crystalloid as initial prehospital fluid resuscitation

Plasma-first resuscitation to treat haemorrhagic shock during emergency ground transportation in an urban area: a randomised trial a 🔁

Hunter B Moore MD, Ernest E Moore Prof, Michael P Chapman MD, Kevin McVaney MD, Gary Bryskiewicz, Robert Blechar, Theresa Chin MD, Clay Cothren Burlew MD, Fredric Pieracci MD, F Bernadette West MD, Courtney D Fleming, Arsen Ghasabyan MPH, James Chandler, Christopher C Silliman Prof, Anirban Banerjee Prof and Angela Sauaia Prof Lancet, The, 2018-07-28, Volume 392, Issue 10144, Pages 283-291, Copyright © 2018 Elsevier Ltd

COMBAT Study Design

Туре АВ

No Antibodies (No Pregnancy / Transfusions) $4\% \longrightarrow 1\%$ of Population

Limited Resource

COMBAT : FP24 Thawing Plasma Storage Paramedic Division Freezers - 30° C Ambulance Coolers - 18° C

Water Bath (Plasmatherm) Thaw < 3.5 minutes

Mobile Ambulance Plasma Delivery System

110 VAC, 20 A, ignition ejector safety and cord reel to GFCI wall receptacle (\$1500) B: Combination 2000 W, 110 VAC power inverter and 100 A, 14.6 VDC battery charger (\$1200) C: 300 Amp-Hour, 12 VDC lithium ion battery with onboard controller (\$3000) **D: Plasmatherm Dry Water** Bath – can run in continuous modeat 37 °C for 36 hours on battery power (\$7000) E: Charging/power inversion system control panel (\$300) F: FFP storage cooler, vacuum insulated and passively cooled with-23 °C phase change material; rated for \geq 72 hours at \leq -18 °C (\$600)

Denver EMS Skills / Enthusiasm

COMBAT Study

Effectiveness of Randomization

Injury related variables	Control	Plasma
	% or Median (IQR)	% or Median (IQR)
PHYSIOLOGY/SHOCK		
Worst HR	112 (100-120)	110 (98-120)
Worst SBP	70 (55-80)	64 (50-80)
Severe shock (SBP<=70mmHg)	55%	68%
Worst Temp	36 (35.1-37)	36 (34.8-36.6)
Worst GCS	14 (8-15)	14 (7-15)
Hgb	14.2 (13.1-16)	15.1 (13.5-15.7)
Platelet Count (1000)	273.5 (218-336)	300.5 (250-357)
Fibrinogen	278 (250-331)	253 (224-310)

Time from injury to 1st Plasma

Test of Equality over Strata Test P-value Wilcoxon <.0001 Log-Rank <.0001

Conclusion: by design, Plasma group patients received plasma earlier (~ 30 minutes before) than Controls.

Primary Endpoints

Primary Factor sints	Control	Plasma	P-	Expected %
Endpoints	N=60	N=65	value	
28-day Mortality	3 (5%) potentially preventable	4 (6%) potentially preventable	0.37	ROC trial (2006-08): 25% MTP trial (2011-14): 20% PROPHET (2010-11): 18%
	3 (5%) non-preventable	6 (9%) non-preventable		· · ·
23-day MOF	1 (2%)	4 (6%)	0.37	Glue Grant: 10%
Death or MOF (composite)	7 (12%)	14 (21%)	0.14	Glue grant: 16%

Survival (hours)

Secondary Endpoints

Secondary endpoints	Control N=60	Plasma N=65	
Variable	Median (IQR) or %	Median (IQR) or %	p-value
Arrival INR	1.15 (1.08-1.29)	1.27 (1.11-1.40)	0.10
INR >1.3	24%	43%	0.0298
BD >8 mEq/L	52%	55%	0.77
Lactate >5mmol/L	48%	51%	0.77
Hyperfibrinolysis (>3%)	25%	24%	
Physiologic (0.9-3%)	45%	44%	0.93
Shutdown (<0.9%)	29%	33%	

COMBAT Conclusions

In a mature urban trauma system with rapid transport to a level I trauma center

pre-hospital plasma does not improve outcome

PREHOSPITAL PLASMA IMPROVES SURVIVAL IN TRAUMA PATIENTS WITH HEMORRHAGIC SHOCK WHEN TRANSPORT TIMES ARE LONGER THAN 20 MINUTES

Anthony E. Pusateri, PhD¹; Ernest E. Moore, MD²; Hunter B. Moore, MD, PhD²; Tuan D. Le, MD, DrPH¹; Francis X. Guyette, MD, MPH³; Michael P. Chapman, MD⁴; Angela Sauaia, MD, PhD⁵; Arsen Ghasabyan, MPH²; James Chandler²; Kevin McVaney, MD⁶; Joshua B. Brown, MD⁷; Brian J. Daley, MD⁸; Richard S. Miller, MD⁹; Brian G. Harbrecht, MD¹⁰; Jeffrey A. Claridge, MD¹¹; Herb A. Phelan, MD, MSCS¹²; William R. Witham, MD¹³; A. Tyler Putnam, MD¹⁴; Jason L. Sperry, MD, MPH⁷

Same populations (n=626) included in original two published studies

JAMA Surg In Press

	All	SC	Plasma	P Value
Number of participants, No. (%)	626 (100)	329 (52.6)	297 (47.4)	
Cohort, No. (%) COMBAT	125 (20.0)	58 (17.6)	67 (22.6)	0.12
PAMPer	501 (80.0)	271 (82.4)	230 (77.4)	
Male sex, No. (%)	467 (74.6)	251 (76.3)	216 (72.7)	0.31
Median age (IQR), y	42 (27-57)	42 (26-57)	43 (29-56)	0.67
Race/Ethnicity, No. (%)				0.26
White	453 (72.4)	239 (72.6)	214 (72.1)	
Black	69 (11.0)	40 (12.2)	29 (9.8)	
Hispanic	64 (10.2)	27 (8.2)	37 (12.5)	
Other/ Unknown	40 (6.4)	23 (7.0)	17 (5.7)	
Mechanism of injury, No. (%)				0.51
Fall	38 (6.1)	23 (7.0)	15 (5.1)	
MVC (Motorcyclist/cyclist and occupant)	338 (54.0)	185 (56.2)	153 (51.2)	
MVC (Pedestrian or struck by or against)	57 (9.1)	29 (8.8)	28 (9.4)	
Firearm	77 (12.3)	35 (10.6)	42 (14.1)	
Stab wound	69 (11.0)	32 (9.7)	37 (12.5)	
Other	47 (7.5)	25 (7.6)	22 (7.4)	
Type of injury, No. (%) (10 pts count for both)				0.37
Blunt	475 (74.7)	257 (78.1)	218 (73.4)	
Penetrating	161 (25.3)	77 (23.4)	84 (28.3)	

Harmonized Data – Transport Time

Transport time (minutes) from AOS to ED

Median prehospital transport time was longer in the PAMPer study compared to COMBAT, 41 minutes vs. 18 minutes; P<.001, but there was overlap between the two studies

Prehospital Plasma Reduced Mortality

Plasma vs Saline Control

1.0 Plasma 0.8 SC 0.6 Surviving 0.4 0.2 -Log-rank P=0.02 HR (95% CI): 0.65 (0.47-0.90); P=0.01 0.0 20 22 24 28 26 Days since randomization

Mortality

	SC	Plasma	Р
28 d	94 (28.6)	61 (20.5)	0.02
24 h	67 (20.4)	40 (13.5)	0.02

Conclusion:

- Prehospital Plasma Improves Survival with Transport Time > 20 min
- Impact of Prehospital Blood Products Depends on the Environment

Thank you !!!

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 26, 2018

VOL. 379 NO. 4

Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk for Hemorrhagic Shock

J.L. Sperry, F.X. Guyette, J.B. Brown, M.H. Yazer, D.J. Triulzi, B.J. Early-Young, P.W. Adams, B.J. Daley, R.S. Miller, B.G. Harbrecht, J.A. Claridge, H.A. Phelan, W.R. Witham, A.T. Putnam, T.M. Duane, L.H. Alarcon, C.W. Callaway, B.S. Zuckerbraun, M.D. Neal, M.R. Rosengart, R.M. Forsythe, T.R. Billiar, D.M. Yealy, A.B. Peitzman, and M.S. Zenati, for the PAMPer Study Group*

Plasma-first resuscitation to treat haemorrhagic shock during emergency ground transportation in an urban area: a randomised trial 🔊 🔁

Hunter B Moore MD, Ernest E Moore Prof, Michael P Chapman MD, Kevin McVaney MD, Gary Bryskiewicz, Robert Blechar, Theresa Chin MD, Clay Cothren Burlew MD, Fredric Pieracci MD, F Bernadette West MD, Courtney D Fleming, Arsen Ghasabyan MPH, James Chandler, Christopher C Silliman Prof, Anirban Banerjee Prof and Angela Sauaia Prof Lancet, The, 2018-07-28, Volume 392, Issue 10144, Pages 283-291, Copyright © 2018 Elsevier Ltd